
SIGNAL-01 1
ID: 836-BSI | Version: 3 | Date: 5/16/08 2:39:35 PM

SIGNAL-01
Avoid using signals or at least keep them short to avoid preemptive interference and reentrancy issues.

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-16

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 6087 bytes

Attack Category • Denial of Service

• Privilege Exploitation

Vulnerability Category • Process management

• Threading and synchronization problem

Software Context • Process Management

• Debug API

Location • signal.h

Description The signal() system call installs a new signal handler
for the signal with number signum. The signal
handler is set to sighandler, which may be a user-
specified function or either SIG_IGN or SIG_DFL.
Upon arrival of a signal with number signum the
following happens. If the corresponding handler is
set to SIG_IGN, then the signal is ignored. If the
handler is set to SIG_DFL, then the default action
associated with the signal (see signal(7)) occurs.
Finally, if the handler is set to a function sighandler,
then (1) either the handler is reset to SIG_DFL or an
implementation-dependent blocking of the signal is
performed and (2) sighandler is called with argument
signum.

Using a signal handler function for a signal is called
"catching the signal." The signals SIGKILL and
SIGSTOP cannot be caught or ignored.

Because signal calls are preemptive and not
necessarily reentrant, there exists the possibility of
one signal being called, its handler beginning to
execute and then during execution, a second signal
being called. In this case, the first signal handler's
execution is stopped and the second signal handler
executes but when it finishes, It does not necessarily
reenter the first signal handler to finish its execution.
This leaves the system in an unknown state.

APIs Function Name Comments

signal

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html

SIGNAL-01 2
ID: 836-BSI | Version: 3 | Date: 5/16/08 2:39:35 PM

Method of Attack An attacker could rapidly call various signals over
and over causing preemptive and reentrant conflicts
between signal handlers leaving the system in a
potentially unstable state.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Generally
applicable.

Minimize use
of signals.
They are
nonportable and
their behavior
varies greatly
from system to
system.

Effective

Generally
applicable.

Minimize
signal handler
functionality
to reduce
the potential
window
for overlap
between signal
calls. Keep
signal handlers
small and
straightforward.
A good strategy
is to use the
signal handler
to set a flag of
some sort that
another part of
the program
will look for
and act on.
Do not allow
signals to run at
privileged level.

Makes
exploitation
more difficult
but does not
resolve the
vulnerability
completely.

Generally
applicable.

Encase signal
handlers in a
self-checking
wrapper to
ensure that a
given handler is
nonselfreentrant
(i.e., that
calling signal1
while they
signal1handler
is executing

Effective at
eliminating risk
of selfreentrant
signal conflicts
but does not
effect potential
intersignal
conflicts.

SIGNAL-01 3
ID: 836-BSI | Version: 3 | Date: 5/16/08 2:39:35 PM

does not restart
signal1handler
but ignores
any signal1
calls until the
signal1handler
finishes
execution).

Generally
applicable.

Warn on
instances
of signal.
If possible,
trace which
function is
being registered
as the signal
handler. If the
function is
overly large
or complex,
increase the
level of severity
of the warning.

Effective
at making
developer aware
of potential
issues.

Signature Details typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t
handler);

Examples of Incorrect Code

Examples of Corrected Code

Source References • Rough Auditing Tool for Security (RATS)2

• signal(2) - Linux man page3.

• Schilling, Jonathan. C++ and Signal Handling4.

Recommended Resource

Discriminant Set Operating System • UNIX (All)

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

http://www.securesoftware.com/resources/tools.html
http://www.die.net/doc/linux/man/man2/signal.2.html
http://www.glenmccl.com/ansi_032.htm

SIGNAL-01 4
ID: 836-BSI | Version: 3 | Date: 5/16/08 2:39:35 PM

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

